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Abstract: This study aims to clarify the piezoelectric characteristics of AIN thin films with specific
crystallographic direction and to fabricate AIN thin films with specific crystallographic orientation. Theoretical
study of dependence of piezoelectric strain and stress coefficients (d3; and ej;, respectively) and
electromechanical coupling factor (k;) as a function of crystallographic direction from the c-axis were
conducted. AIN thin films were deposited using electron cyclotron resonance (ECR) sputtering with changing
angle between surface of the substrates and AIN flux, and evaluated by X-ray diffraction (XRD) measurement.
XRD patterns suggested the possibility that crystallographic orientation of the AIN thin films changed due to

deposition angle.
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INTRODUCTION

In order to supply power to sensor nodes in
wireless  sensing  systems, energy harvesters
scavenging energy from the environment are
attractive replacement because of their longer life time
and lower maintenance cost [1]. For the energy
harvesters, mechanical vibration is one of the
attractive power sources, because it has better
reliability and higher power density [2] compared to
light, radio-frequency (RF), and -electromagnetic
radiation. In order to convert mechanical energy into
electricity, piezoelectric systems have the advantages
against electromagnetic and electrostatic ones [3] in
seize, energy conversion efficiency, and simpleness of
structures. A material often used for energy harvesters
fabrication is lead zirconate titanate (Pb[Zr,Ti,]Os,
PZT). PZT, however, has been considered to be
environmentally hazardous due to toxic Pb. Thus
recently Pb-free aluminum nitride (AIN) thin films
have attracting attention as an alternative to PZT.

As equation (1) indicates, one of the dominating
parameters for output power of the energy harvesters
is an electromechanical coupling coefficient k3, of the
piezoelectric materials determining energy conversion
efficiency between mechanical and electrical energy.
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where k;;, myy, a, f. and Q are electromechanical [

coupling coefficient, effective mass, acceleration,
resonant frequency and quality factor respectively [4].
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To maximize the output power of the energy
harvesters, one should adopt the specific
crystallographic  direction of the piezoelectric
materials, along which the k;; becomes maximum. In
case of the AIN thin film, k;; depends on its
crystallographic direction in the same way as it
changes in a zirconium oxide thin film [5], though
usually a single crystal AIN thin film with c-axis
oriented normal to the substrate is adopted for the
energy harvesters [6].

In this study, we theoretically investigated
dependence of the k;; on the crystallographic direction
of the AIN thin films, and experimentally challenged
fabrication of the AIN thin films with specific
crystallographic direction normal to the substrate.

THEORETICAL

Dielectric permittivity &' , piezoelectric stress
coefficient e’and elastic stiffness ¢’ of AIN thin films
can be calculated by the following equations using
values already known for those of the AIN thin films
with c-axis normal to the substrate [7].
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where 0, €, e and c is the tilting angle of AIN c-axis to
substrate normal, dielectric permittivity, piezoelectric
stress coefficient and elastic stiffness of AIN with c-
axis normal to substrate. The elastic compliance, s, of
tilted AIN thin films is the inverse of the elastic
stiffness. Then piezoelectric strain coefficient can be
obtained by the simplified equation (7)

dy;=es3; *sp; 7
where d;;, e;, and s;; is piezoelectric strain
coefficient, piezoelectric stress coefficient and elastic
compliance respectively. Finally, the mechanical
electrical coupling factors are calculated by equation

®)
(8)

k31 = (e§1511/£33)1/2
EXPERIMENTAL
An AIN thin film was deposited at 300 °C on a Si
(100) substrate using electron cyclotron resonance
(ECR) sputtering. To fabricate the AIN thin films
with specific crystallographic direction normal to the
substrate, a tilting jig [8] as indicated in the Fig. 1
was used to hold the substrate. This design allows
the particle flux coming from the bottom to impinge
the substrate with an inclination angle 0;,. =
0°,30° and 50°. The obtained AIN thin films were
characterized by X-ray diffraction (XRD)
measurement.
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Fig. 1: The schematic of sputtering c-axis tilted AIN
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RESULTS AND DISCUSSION

The results of calculation for piezoelectric stress
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Fig. 2:(a) The piezoelectric stress coefficient of tilted
AIN thin films, (b) the piezoelectric strain coefficient
of tilted AIN thin films, (c) the electromechanical
coupling coefficient of tilted AIN thin films, (d)
crystallographic direction of tilted AIN unit cell



and strain coefficient (e;; and d;; respectively),
electromechanical coupling coefficient (k3;) of the
AIN thin films are shown in Figure 2(a)-(c) as a
function of crystallographic direction 8, from the c-
axis [see Fig. 2(d)]. Both of the piezoelectric stress
coefficient e;; [Fig. 2(a)] and the piezoelectric strain
coefficient d;; [Fig. 2(b)] showed clear dependence
on f.. The maximum value appeared at 8, = 58.6°
for dz;, and at 56.9° for e3;. The value of the k;; for
different 8, were calculated by substituting obtained
values of the d;;, e3; and €33 into equation (7) and (8)
and plotted in Fig. 2(c). The k;; also showed clear
dependence on 6, and showed the maximum at
0. =52.6°. The maximum value of 0.244 at
0. = 52.6°1s 206% as much as that of 0.118 along
c-axis at 8, = 0°.

Figure 3 shows the XRD patterns of the AIN thin
films deposited wusing tilting jigs with O, =
0°,30°,and 50°, repspectively. In every patterns, we
clearly observed (002) and (004) diffraction peak at
20 = 36.0° and 76.4°, respectively. In addition, we
observed (100) diffraction peak at 20 = 33.2°, but
its intensity was less than two orders of magnitude.
This apparently indicated that all the AIN thin films
in this study have high degree of c-axis orientation
normal to the substrate surface. Closely looking at
the (002) diffraction patterns (see the inset), we
noticed that peak width became broader and peak
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Fig. 3: XRD patterns of AIN thin films deposited
using different tilting jigs
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Fig. 4: A unit cell of normal (black) and distorted
(red) AIN hexagonal structures
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position shifted more to the right with increasing the
Oinc - The former maybe due to less degree of
crystallization or thinner thickness of the AIN thin
films with increasing 6;,.. The latter may due to
change in a distance between nearest neighboring
(001) planes.

To explain the above mentioned change, we
propose one model. Figure 4 shows a unit cell of
normal (black) and distorted (red) AIN hexagonal
structures. If unit cell of an AIN is distorted in the
thin film deposited with 6;,. = 30° and 50° without
changing length of the c-axis, a distance between
nearest neighboring (001) planes dy, decrease as
shown in Fig. 4. If angle between c-axis of normal
and distorted AIN unit cell is a, then d,o reduces
with increasing o as

)

Figure 5 shows peak angle of the (002) diffraction
of the AIN thin films on the left axis as a function of
Oinc. The figure indicated that the peak angle shifted
almost linearly to the higher angle with
increasing 8;,.. On the right axis, normalized dg
obtained using the values of the peak angle and
Bragg’s condition was also plotted. The values of
dioo were used to calculate the angle a between c-
axis of normal and distorted AIN unit cells from
equation (9).

Figure 6 shows the angle a as a function of 6;.
Provided the previous model of distorted AIN unit
cell is the case, the figure indicated that

dioo = ¢ cosa
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Fig. 5: Peak angles of AIN (002) diffraction (red
line) and normalized d ;99 length (blue, dotted line)
versus tilting angles of sputtering jig



0 1 1 1 1 E

0 10 20 30 40 50
O

Fig. 6: Calculated distorted angles versus tilting

angles of sputtering jig

the o increased almost linearly with increasing ;.
Further investigation is in progress to verify the unit
cell distortion.

CONCLUSION

In this study, dependence of piezoelectric
coefficients (d;; and e;;) and electromechanical
coupling factor (k3;) on crystallographic direction of
AIN thin films are investigated theoretically. AIN
thin films with specific crystallographic direction
normal to the substrate were fabricated in electron
cyclotron resonance (ECR) sputtering with
0°,30° and 50° tilting jigs. The deposited thin films
were evaluated by X-ray diffraction (XRD)
measurement. The XRD patterns showed high
degree of c-axis orientation normal to substrate
surface. At the same time, a clear shift of peak
position of (002) diffraction patterns can be observed.
This phenomenon was explained as the change of
distance d;p) between neighboring (001) planes
which due to the distortion of AIN unit cell.
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