FROM NANOTUBES TO HETEROGENEOUS NANOWIRES:
FAST ELECTROCHEMISTRY FOR HIGH POWER AND HIGH ENERGY
STORAGE DEVICES

Sang Bok Lee¹,²
¹Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
²Graduate School of Nanoscience and Technology (WCU), Korea Advanced Institute of Science and
Technology (KAIST), Daejeon, Korea

Abstract: This presentation describes a new electrochemical growth mechanisms and applications of the
conductive polymer nanotubes and the heterogeneous composite nanowires composed of conductive polymer and
metal oxide in cylindrical pores of a template. Fast electrochemistry of nanotube structured materials enables us to
design extremely fast charge transport devices due to thin nature of nanotube wall and well-aligned array
structure. This discovery makes mass production possible in the fabrication of well-defined nanotubes with
various materials from metals to metal oxides to polymers and opens a numerous applications of nanotubes to
electrochemical devices. For example, using poly(ethylenedioxythiophene) (PEDOT) nanotubes, we have
demonstrated the world-first moving-image speed in the electrochromic device with high optical color contrast,
which has never been achieved simultaneously before. Using the same principle of the fast electrochemistry, we
are developing high-power high-energy storage devices such as supercapacitors that will enable fast charge for
high energy electric devices. Many near-future electrical devices require both high energy and high power density
energy source that has surge capacities to provide enough power in varying demands, e.g. electric cars, large scale
electric grid of renewable energy, potable electrical devices, and sensor-actuator networks for military and medical
applications. In addition, the high power energy storage device can also provide short recharging time that is one
of important requirements for electric car batteries. This urgent requirement has led to much interest in high
power high energy storage devices such as ‘supercapacitors’ and ‘super batteries’, but it is difficult to achieve
devices which provide both high energy and high power.

The attributes of good electrode materials to satisfy both high power and high energy density are: (1) high
reversible storage capacity for ions (e.g. Li+), (2) rapid ion transport into and out of ion storage materials, and (3)
high conductivity for fast electron transport. Heterogeneous nanostructured materials offer a solution to this
problem through (1) large surface areas per unit volume or weight and (2) fast ion transport rates due to very short
ion-diffusion path, thus promising ultrafast charge-discharge (high power) simultaneously with high energy
density. Therefore, massive uniform arrays of nanostructures should be synthesized from heterogeneous materials
to achieve high charge storage capacity, rapid charge transport, mechanical stability during cycling, properties
which are very difficult if not impossible to realize in single material systems. The fundamental study of
capacitive properties will be discussed based on the PEDOT nanotube structures and MnO2/PEDOT composite
nanowire structures. Electrostatic nanocapacors will also be discussed briefly based on heterogeneous nanotube
structures enabled by atomic layer deposition (ALD).

Keywords: Heterogeneous nanostructure, PEDOT, nanotube, nanowire, composite nanowire, coaxial nanowire

REFERENCES
[2] Ran Liu, Sang Bok Lee 2008 MnO2/Poly(3,4-ethylenedioxythiophene) Coaxial Nanowires by One-Step Coelectrodeposition for
[3] Ran Liu, Seung Il Cho, and Sang Bok Lee 2008 High-Power Supercapacitors Based on Poly(3,4-ethylenedioxythiophene) Nanotube Array in
Alumina Template Nanotechnology, 2008, 19, 215710.


